
TinyQMIX: Distributed Access Control for mMTC
via Multi-agent Reinforcement Learning

Tien Thanh Le∗†, Yusheng Ji†∗, John C.S. Lui ‡
∗Department of Informatics, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

†National Institute of Informatics, Tokyo, Japan
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Email: ∗†{lethanh, kei}@nii.ac.jp;‡cslui@cse.cuhk.edu.hk

Abstract—Distributed access control is a crucial component for
massive machine type communication (mMTC). In this commu-
nication scenario, centralized resource allocation is not scalable
because resource configurations have to be sent frequently from
the base station to a massive number of devices. We investigate
distributed reinforcement learning for resource selection without
relying on centralized control. Another important feature of
mMTC is the sporadic and dynamic change of traffic. Existing
studies on distributed access control assume that traffic load is
static or they are able to gradually adapt to the dynamic traffic.
We minimize the adaptation period by training TinyQMIX,
which is a lightweight multi-agent deep reinforcement learning
model, to learn a distributed wireless resource selection policy
under various traffic patterns before deployment. Therefore, the
trained agents are able to quickly adapt to dynamic traffic and
provide low access delay. Numerical results are presented to
support our claims.

Index Terms—mMTC, multi agent deep reinforcement learning

I. INTRODUCTION

In recent years, the number of connected devices has grown
exponentially due to the proliferation of Internet of Things
(IoT) applications. Many IoT applications are enabled by mas-
sive machine type communication (mMTC), i.e, autonomous
vehicles, industrial automation, or environmental sensing. It
has been projected that about half of total global connections
(about 15 billion devices) will be mMTC devices [1].

The traffic features of mMTC are inherently different from
other communication scenarios. First, mMTC protocols should
support a high overloading factor, in which a large number of
devices share a small number of wireless resources. Although
the number of wireless resources is small, the limited resource
would still be able to support mMTC because mMTC devices
typically transmit a low volume of short packets and uplink
data [2]. Another important feature of mMTC is sporadic
traffic [3]. Sporadic traffic means that devices do not always
have data to transmit and only a random subset of devices
access the network in each timeslot. Moreover, mMTC traffic
tends to be dynamic, which means that the amount of data
generated and sent by mMTC devices would unlikely be a
constant rate throughout. For example, IoT sensors normally
send regular status updates to the server, but sometime an
important event would be triggered, so these devices must
send a larger amount of information regarding that important
event [2]. In short, future mMTC protocols are expected to

address the mentioned features, by allowing high overloading,
and supporting sporadic, and dynamic uplink traffic.

To solve this problem, many of approaches have been put
forward in 5G’s multiple access control (MAC) layer such
as uplink contention-based grant-free (GF)-non-orthogonal
multiple access (NOMA) [4]. NOMA would increase the
system overloading because it enables multiple devices to
reuse the same time-frequency resource via power domain
or code domain multiplexing. The contention-based grant-free
mechanism reduces the delay of sporadically arrived packets
since it allows devices to transmit data directly to base station
(BS) without the need for the request and grant procedure.

A growing body of work has improved the original
contention-based GF NOMA by equipping the protocol with
reinforcement learning. In general, reinforcement learning
techniques can solve the network optimization problem in a
data-driven manner instead of relying on the analytical net-
work model. For the current problem, reinforcement learning is
adopted for selecting the MAC layer’s parameters. In [5], Deep
Q Networks (DQN) with long short-term memory (LSTM)
architecture are deployed at each mMTC device to select the
wireless resource and power level to maximize the network
throughput. This is an independent DQN policy. However,
for independent learning methods, the changing policy of one
agent leads to changing the optimal target policy of another
agent. Thus, independent DQN has no convergence guarantees
and may lead to poor performance [6, Sec 3.3].

The problem of independent DQN can be mitigated by
multi-agent deep reinforcement learning (MADRL) policies
such as Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning (QMIX) [6]. In QMIX,
the LSTM Q-function of all devices are trained together in
a centralized simulator, such that the Q-value of an agent
is consistent with the joint-action’s Q-value function of all
agents. After training, agents can select the best joint-action
independently without any communication. Huang, Wong, and
Schober leveraged QMIX for selecting pilot sequences [7],
while Guo, Chen, Liu, et al. also applied QMIX for deciding
whether to back-off in 802.11 network [8]. Both proposed
QMIX policies demonstrated their superiority to independent
DQN and other heuristic policies. However, the main draw-
back of these policies is the computational complexity of
their LSTM architecture. In fact, running this neural network’s

978-1-6654-5468-1/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 9
6t

h
V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
22

-F
al

l)
| 9

78
-1

-6
65

4-
54

68
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
22

-F
al

l5
72

02
.2

02
2.

10
01

27
30

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

Transmitting device

High active device

Low active device

Idle device

Fig. 1: mMTC devices uplink transmission model

architecture on IoT devices take a long time while the deadline
for decision-making is short. Also, the problem of low rate and
sporadic traffic were not explicitly addressed.

Sporadic traffic for uplink contention-based NOMA has
been investigated in [9]. two distributed Q-learning (DQL)
schemes denoted as ADDQ and PDDQ to select resources
that minimize collisions. However, they only consider that
traffic intensity of each device remains constant throughout
its lifetime.

To the best of our knowledge, there is no prior work on
a fully distributed MAC protocol that addresses the wireless
resource selection problem with sporadic and dynamic traffic
in mMTC. Therefore, the goal of this work is to design a new
distributed resource selection protocol to solve this problem.
The primary contributions of this paper are as follows:

• We map the problem into a decentralized partial ob-
servable Markov decision process (Dec-POMDP). We
also design a lightweight local observation and MADRL
policy called TinyQMIX. TinyQMIX agents have a low
model complexity, such that they can be implemented on
mMTC devices

• TinyQMIX policy is trained on a wide variety of sporadic
traffic scenarios, allowing the trained agents to quickly
adapt to the ever-changing traffic dynamic. Devices can
independently select the best wireless resource to mini-
mize system-wide access delay.

• Numerical simulations are performed to evaluate the
transmission delay of the TinyQMIX with other widely-
adopted heuristic and MADRL algorithms.

The rest of this paper is organized as follows. Section
II presents the network and traffic model. We propose our
Dec-POMDP formulation and TinyQMIX for dynamic access
control in mMTC in the Section III. Numerical simulation is
presented in Section IV

II. SYSTEM MODEL

Here, we present the scope of our study, which includes
the mMTC network model, the dynamic and sporadic traffic
model, and the dynamic access control model.

A. Network scenario

For the ease of presentation, we first consider a single-cell
wireless system in Figure 1. The BS is located at the center
and is surrounded by N devices within the coverage radius.
LetN = {1, 2, . . . , i, . . . , N} be the set of N devices. Assume
that the system is slotted and time synchronized. Because the

mMTC traffic contains mostly short packets, we assume that
the service time of one packet is one timeslot.

B. Traffic model

Assume that the packet arrival rate per timeslot for the ith

device is λi(t) where t is the index of a timeslot. Similar to
[9], we assume the set of devices N can be divided into two
groups: high active devices Nh and low active devices Nl.
Also, the network is likely to contain more low active devices
(|Nh| ≪ |Nl|).

We consider the dynamic traffic arrival scenario: The distri-
bution of traffic of every device changes within their lifetime.
Therefore, the parameter of packet arrival distribution λ(t)
is a time-dependent variable. We assume that devices have
the same dynamic within an interval ∆T , where ∆T is a
constant. All devices change their arrival distribution λ(t)
synchronously after a constant ∆T timeslots. We like to note
that since our proposed method is data-driven, it would also
work with asynchronous changes.

C. Distributed access control model

Let the total duration of τ timeslots be the scheduling
interval. At the beginning of every scheduling interval, each
device selects any of C resource units to send data. Thus, the
scheduling decision space is CN , which grows exponentially
with the number of devices and resources. We reduce the
scheduling space by dividing N devices into many groups,
each containing N

′
devices and M resource units, similar to

what has been done in [5], [9], [10]. Devices can be grouped
arbitrarily as long as less than N ′ devices share M resources.
Let ϕ = N

′

M be the overloading factor, and ϕ≫ 1.
A collision occurs when two or more devices select the

same resource unit and transmit their data in the same timeslot.
Whenever this happens, each colliding device follows a binary
exponential back-off procedure to resolve the contention. Par-
ticularly, each device retains a contention window value cw,
which is initialized at 1. If there is a collision, the contention
window is doubled until it reaches CWmax. Then, each device
draws a uniform random integer r ∼ U([1, cw]), and waits for
r timeslots before resuming the transmission. To counter the
effect of sporadic traffic, each device can temporarily store
a maximum of Lbuffer packets in its buffer. Also, a collided
packet can be retried for a maximum of Lretry times. By doing
that, the fraction of dropped packets is negligible, and the
high-reliability requirement could be realized.

The distributed access control mechanism here is a general
abstraction and it can be integrated with contention-based
GF-NOMA. A resource unit in GF-NOMA can be a tuple
of frequency, pilot sequence, and NOMA code-book. We
suppose that the given system adopts time duplex division
(TDD) mode. Pilot sequences are broadcasted by BS, then
devices measure channel state information (CSI) to calibrate
their power level to satisfy the receiving power requirement.
Assume that devices are able to satisfy the requirement, so the
only cause for transmission failure is transmission collision.

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

III. DISTRIBUTED DYNAMIC RESOURCE SELECTION -
TINYQMIX

The distributed wireless resource selection problem can be
formulated as a Dec-POMDP [11], which is defined as a tuple
G = ⟨N ′, S, U, P, r, Z, γ⟩. The system consists of N ′ agents
(or N ′ devices). Each agent runs according to Algorithm 1
with TinyQMIX decision-making capability combined with
random access procedure. s ∈ S is the true state of the
environment. The state can either be: (1) the state of the
network simulation’s program when the agents are trained, (2)
the state of the BS and channel quality at deployment time.

Algorithm 1 TinyQMIX agent i for distributed access control

Input: Agent’s DNN parameter θi, MAC’s parameter
CWmax, Lbuffer, Lretry

1: Initialize:
λ̄i = 0, ui

t−1 = 0, ⟨s̄r1, . . . , s̄rM ⟩ = 0
2: for t = 1, 2, . . . do
3: Generate packets
4: Append packets to buffer until Lbuffer packets are stored
5: if t mod τ = 0 then
6: Select resource unit ui

t = argmaxui Qi(z
i, ui; θi)

7: end if
8: Back-off or transmit the head packet in the buffer on resource

unit ui
t (see Section II-C)

9: Receive acknowledgement packet from BS
10: Adjust back-off parameter cw or drop packet (see Section

II-C)
11: Update local observation zi includes λ̄i, ⟨s̄r1, . . . , s̄rM ⟩

using Formula 1
12: Update the running mean and variance of zi at the training

phase, and normalize zi in all phases
13: end for

In every timeslot, each device i ∈ {1, . . . , N ′} chooses
an action ui ∈ U , which is a resource unit. Here, U is a
group of resources, which is granted a group of devices. The
actions of all devices in that group constitute the joint action
u = (u1, . . . , uN ′

) ∈ U. If the joint action is u under the state
s, the next state of the system s′ can be obtained according
to the state transition function P (s′|s,u) : S ×U → S. For
this Dec-POMDP, we assume it is of a model-free structure.
During the training phase, the network simulator can generate
the transition function P . Given the current network state
s and the joint-action u, the simulator computes the next
state s′ according to the traffic model, binary exponential
back-off rule, and buffer rule, which is described in Section
II. We discuss the remaining elements of the Dec-POMDP
formulation in the following subsections.

A. Measurement of local observation

In Dec-POMDP, partially observable means that each of
n agents cannot obtain the true state s because s contains a
network-wide information. However, devices can extract their
local observation z ∈ Z, which can be easily gathered on
their own. The local observation is the input for devices to
determine the next action without communicating to the BS.
We design the local observation as follows:

1) the average packet arrival rate λ̄i

2) the previous action ui
t−1

3) the list of average success transmission rate per resource
⟨s̄r1, . . . , s̄rM ⟩.

The first two elements represent the internal state of each
device, whereas the remaining elements capture partial infor-
mation about the network’s traffic intensity at each resource
from the perspective of that device.

Each device selects an action based on a stochastic policy
πi(u) (Line 5-7, Algorithm 1). In particular, the policy is
maximizing the Q-value argmaxui qi = Qi(z

i, ui; θi), where
θi is the deep neural networks (DNN)’s parameter. Previous
works adopted a sequence of historical local observation as the
input for each agent and LSTM as the network architecture [5],
[7], [8]. This approach demanded a large memory footprint
and lengthy computation, but mMTC devices have limited
computational capability. Thus, a compact local observation
and small neural networks architecture is needed. The local
observation for agents in our proposed system is a vector of
M+2 elements. Also, a fully connected DNN with one hidden
layer is the neural networks architecture. Besides, to minimize
the memory footprint on the mMTC devices, the historical
average is captured via an incremental implementation [12,
p.31]. For example, the update rule to estimate the average
packet arrival rate is:

λ̄i
t+1 ← λ̄i

t + α(xt − λ̄i
t) (1)

where xt is the number of packet generated within the tth

timeslot, and α is the step size of the update. A similar update
rule is applied for estimating the success rates.

The learning process could be hindered if the scale of
different inputs to the DNN are not the same. Also, agents do
not know the exact scale of the average packet arrival rate as
well as the average success transmission rate. Thus, we track
the running mean and variance of the local observations using
the data generated during the training phase of the system [13].
This technique allows the mean and variance to be estimated
as the observation arrives one at a time, while devices do not
need to keep the observation for a second pass. Devices learn
the means and variances during the training phase. Then, the
final means and variances of the observations are kept constant
to normalize the observation in the testing and deployment
phase (Line 12, Algorithm 1).

B. Global observation and reward

The global observation is the concatenation of local obser-
vations z = ⟨z1, . . . , zN ′⟩. This global observation is the input
for the Hypernetwork of QMIX, which generates the parameter
for the mixer network. The mixer network combines the values
given by individual value functions q = ⟨q1, . . . , qN ′⟩ into a
single value q̂tot, which estimate the joint-action’s value. In the
training phase, the gradient is backpropagated from the mixer
network to individual DNN value functions. This mechanism
allows each device to learn the association between its local
observation and the global observation, thereby leading to
higher performance than independent DQN.

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

Let r(s,u) : S×U→ R be the joint-action reward function.
Consider cluster of devices N ′

at timeslot t, the set of devices
that attempt to transmit is N ′

transmit(t). The set of successfully
transmitted devices is N ′

success(t). Then, the joint-action reward
at every scheduling interval τ is defined as:

r(t) =
1

N ′

i=N
′∑

i=1

∑t′=t+τ
t′=t 1{i ∈ N ′

success(t)}∑t′=t+τ
t′=t 1{i ∈ N ′

transmit(t)}
(2)

Equation (2) presents the average success transmission rate
overall N

′
devices in a scheduling interval τ. If the reward

is higher, the average access delay is lower because a high
success rate means that devices do not have to perform am
excessive amount of back-off operations. This reward function
is similar to previous work on sporadic traffic [9]. The reward
is chosen to be the average success rate over a longer time
horizon such that the uncertainty of the sporadic traffic arrival
is mitigated.

C. Training with dynamic traffic

TinyQMIX agents can be trained to select the best wire-
less resource under various traffic conditions according to
Algorithm 2. First, the DNN for every device and the mixer
network are initialized at random. The average arrival rate is
changed every interval ∆T (Line 3-5, Algorithm 2). We train
the TinyQMIX agents such that they can cooperatively select
the resource units in an uncoordinated manner. Particularly,
the TinyQMIX parameter is optimized to estimate the correct
joint-action Q-value with different sporadic traffic distributions
(Line 13-16, Algorithm 2).

In the testing phase, we generate and store traffic traces. A
trace is a matrix containing the number of packets generated
by each device in every timeslot. Different methods are tested
on the same trace to compare their performance. When being
tested on the trace, the trained TinyQMIX models do not
require any further fine-tuning or adaptation. The trained
model can immediately perform well on newly unseen traffic
distribution in the testing traffic traces because the DNN agents
can generalize and give an accurate assessment of the action’s
value based on the vast number of trained patterns.

IV. NUMERICAL SIMULATION

In this section, we discuss the simulation scenario, briefly
introduce the practical baselines, and finally provide an em-
pirical comparison.

A. Simulation scenario

We tested different channel access policies under three
levels of traffic dynamic: ∆T ∈ {10s, 60s,∞}. The traffic
of the set of high active devices Nh has Poisson distribution
with average arrival rate λh = 0.1 (packet per slot), whereas
that of the low active devices Nl also has Poisson distribution
with λl = 0.00833 [9]. The device type is randomly reassigned
such that the probability of high active device is 1/5, and the
probability of low active device is 4/5.

The total length of the traffic traces for testing is 1 hour. We
consider the 0.5 ms timeslot, then the testing time is equal to

Algorithm 2 An episode of offline centralized training
1: t← 0
2: while t < Tepisode do
3: if t mod ∆T = 0 then
4: Redraw λ(t)
5: end if
6: for step in 1, . . . , Toptimization interval do
7: Run all agents (Algorithm 1)
8: Collect local data zt, zt+1, ut

9: Collect global reward r(t)
10: Save ⟨zt, zt+1,ut, r(t)⟩ to replay memory
11: end for
12: Sample minibatch from replay memory
13: Compute individual’s Q-values

q = ⟨Qi(z
i, ui; θi),∀i ∈ {1, . . . , N ′}⟩

14: Compute estimated total Q-value

q̂tot = Qtot(z,u; θ
mixer)(q)

15: Compute target total Q-value

qtot = r + γmax
u′

Qtot(z,u
′; θmixer)

16: Compute the mean square error between q̂tot and qtot.
Compute the gradient using the error and update the network
parameters using stochastic gradient ascend

17: t← t+ 1
18: end while

7.2 million timeslots. Let the scheduling interval be 25ms (50
timeslots), then there are a total of 144k scheduling intervals.
Also, the MAC’s parameters Lbuffer, Lretry, and CWmax are
all equal to 16. These parameters were chosen such that the
probability of packet drop is negligible. Thus, different policies
are only compared in terms of their access delay.

Then, we tested the system with different cluster sizes. The
number of resource units per cluster are M ∈ {2, 4, 8, 16}, and
the number of devices per cluster are N ′ ∈ {12, 24, 48, 96},
respectively. The system overloading is ϕ = 6. Similar to [9],
the ratio between high and low active devices is |Nh|

|Nl| = 1
4 .The

detailed hyperparameters for training TinyQMIX are presented
in Table I.

TABLE I: Hyperparameters for training TinyQMIX

Hyper parameters Value
Number of training episodes 1000

Episode length 100(s)
Optimization interval 32

Learning rate 1e-4
Batch size 1024

Replay memory size 10000
Discounted factor γ 0

Exploration start ϵstart 0.9
Exploration end ϵend 0.05

Number of agents {12, 24, 48, 96}
Observation update’s step size α 0.001

Number of hidden units for agents’ DNN {8, 8, 16, 32}
Number of hidden units for mixer’s DNN {64, 128, 256, 512}

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Moving average of delay in the first 5 minutes of the
testing trace, with ∆T = 10s and N ′ = 12.

B. Baselines

We compare TinyQMIX policy with widely-used distributed
resource allocation policies. First, random is a policy that each
device selects the action randomly. Second, Round Robin (RR)
is a policy in which each device takes turn for transmitting se-
quentially in each available resource unit and sequentially over
time. DQL which has been proposed in [9] is also taken into
account. We also compare our proposal with recently proposed
QMIX policy using LSTM as agent’s network architecture
[7], [8], denotes LSTMQMIX. Similar to what has been done
in [8], we kept a sequence of 10 local observations as the
input for the LSTM agents. Then, we trained the LSTMQMIX
policy using Algorithm 2.

Water Filling (WF) is a heuristic and centralized policy,
in which, the BS can estimate the average arrival rate to
allocate a balanced amount of traffic on different resource
units. However, in WF, devices must send the CSI to BS, then
BS must take a proportion of timeslots to send the resource
assignment to devices. Water Filling Lower Bound (WFLB) is
an unrealistic version of WF. In WFLB, we assume that there
is no signaling overhead and the perfect arrival rate is known
beforehand. Because of its unrealistic assumptions, WFLB
has the best performance and it will serve as an empirical
performance bound. 1

C. System performance

We compare the performance of the proposed method in
different simulation scenarios.

1) Compare delay over time when the traffic is highly
dynamic: Figure 2 compares the delay of random, RR, WF
and TinyQMIX policy under the scenario that traffic condition
changes every 10 seconds. The delay of WF was among
the highest because 6/50 timeslots are reserved for downlink
resource assignment, while these timeslots can be used for
uplink data in other distributed methods. The performance
of RR was far from the lower-bound performance of WFLB.
Although RR does not have any signaling overhead like WF,
its average delay still fluctuated around 40 ms, because the

1The full implementation of our experiment can be found at https://github.
com/lethanh-96/tinyqmix-mtc

arrived packets need to wait for a long time until the scheduled
timeslot.

TinyQMIX consistently outperformed other policies. Its
delay approached the lower bound method WFLB throughout
5 minutes testing trace, in either low traffic intensity or high
traffic intensity situation.

2) Compare delay over cluster size: Figure 3a presents
the average delay of different policies when the number of
devices per cluster increases. TinyQMIX consistently outper-
formed the other policies. As the cluster scaling up, DQL
and LSTMQMIX became worse, while WF improved slightly
but all of them were not outperform TinyQMIX. It shows
that TinyQMIX can consistently handle the task of distributed
resource unit selection better than the baselines on all tested
network scales. When the size of the cluster increases, the
delay of WFLB became smaller because there is higher
flexibility for selecting resource units. However, the joint-
action space of multiple agents also became exponentially
larger, which makes training the TinyQMIX harder. The results
suggest that the best cluster size is 24, which TinyQMIX can
produce the lowest delay, in comparison with other cluster
sizes.

3) Compare delay over different traffic dynamic scenarios:
Figure 3b compares different policies under three traffic dy-
namic scenarios. We are able to reproduce the result from
[9], that is DQL is better than random and RR policies under
the static traffic trace. However, the average delay of DQL
was higher than a random policy at a higher traffic dynamic,
which indicates that DQL cannot handle dynamic traffic as we
hypothesized. Besides, there is no significant change in the
delay produced by RR, random, or WF policies in all three
testing traces.

LSTMQMIX and TinyQMIX were trained on the scenario
in which ∆T = 10s and tested on slower traffic changes.
LSTMQMIX only performed well on the trained scenario,
while TinyQMIX performed well in all cases. This indicates
that TinyQMIX generalized the trained environment better
than LSTMQMIX. In all traces, the gap between the delay
of TinyQMIX and WFLB was always the smallest. These
results suggest that the proposed TinyQMIX policy is the most
suitable policy for tackling both static and highly dynamic
traffic.

D. Model complexity

Here, we compare the model complexity of different fully
distributed policies. Note that DQL or WF requires regular
information exchange between BS and devices, thereby com-
paring the model complexity of fully uncoordinated policy
such as TinyQMIX with DQL or WF is unfair. We compare
fully distributed policies such as Random, TinyQMIX, and
LSTMQMIX in terms of their FLoating-point Oerations Per
Second (FLOPS) needed to compute the local observation
and perform model inference. Random has the smallest com-
putational requirement at only 40 FLOPS for selecting 40
random actions per second. On the other hand, TinyQMIX
consumes 3000 FLOPS when N ′ = 12, 4520 FLOPS when

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

(a) Average access delay with different numbers of devices per
cluster, when the traffic changes every 10 seconds.

(b) Average access delay with different intervals of traffic changes,
when the number of nodes per cluster is 12.

Fig. 3: Average access delay under different network sizes and traffic changing rate

N ′ = 24, and just below 50k FLOPS when N ′ = 96.
LSTMQMIX is the most demanding agent, which requires
at least 52k FLOPS for the smallest subgroup size of 12.
Note that, common general purpose microprocessor such as
ARM Cortex-M has the maximum computational capacity of
1.6 GFLOPS, thereby it can clearly support TinyQMIX with
the best subgroup size N ′ = 24. In short, TinyQMIX can
facilitate a smaller delay than a simple method like Random,
and induces significantly less computational overhead than the
recently proposed MADRL policy such as LSTMQMIX.

V. DISCUSSION & CONCLUDING REMARKS

To sum up, our work proposed TinyQMIX, a lightweight
cooperative multi-agent reinforcement learning policy that
enables distributed and autonomous mMTC network. The find-
ings of this study support the idea that a proper distributed re-
source allocation method can outperform a centralized method,
due to the cost of exchanging information with a centralized
controller. Besides, our results support the hypothesis that
reinforcement learning, which is learned on various patterns,
can generalize and adapt to changes.

REFERENCES

[1] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and
S. J. Johnson, “Grant-free non-orthogonal multiple ac-
cess for iot: A survey,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 3, pp. 1805–1838, 2020.

[2] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P.
Ameigeiras, J. J. Ramos-Munoz, and J. M. Lopez-Soler,
“A survey on 5g usage scenarios and traffic models,”
IEEE Communications Surveys & Tutorials, vol. 22,
no. 2, pp. 905–929, 2020.

[3] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-
Dhahir, and R. Schober, “Massive access for 5g and
beyond,” IEEE Journal on Selected Areas in Communi-
cations, vol. 39, no. 3, pp. 615–637, 2020.

[4] K. Au, L. Zhang, H. Nikopour, et al., “Uplink con-
tention based scma for 5g radio access,” in 2014
IEEE Globecom workshops (GC wkshps), IEEE, 2014,
pp. 900–905.

[5] J. Zhang, X. Tao, H. Wu, N. Zhang, and X. Zhang,
“Deep reinforcement learning for throughput improve-
ment of the uplink grant-free noma system,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 6369–6379,
2020.

[6] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar,
J. Foerster, and S. Whiteson, “Qmix: Monotonic value
function factorisation for deep multi-agent reinforce-
ment learning,” in International Conference on Machine
Learning, PMLR, 2018, pp. 4295–4304.

[7] R. Huang, V. W. Wong, and R. Schober, “Throughput
optimization for grant-free multiple access with multi-
agent deep reinforcement learning,” IEEE Transactions
on Wireless Communications, vol. 20, no. 1, pp. 228–
242, 2020.

[8] Z. Guo, Z. Chen, P. Liu, J. Luo, X. Yang, and X. Sun,
“Multi-agent reinforcement learning based distributed
channel access for next generation wireless networks,”
IEEE Journal on Selected Areas in Communications,
2022.

[9] J. Liu, Z. Shi, S. Zhang, and N. Kato, “Distributed
q-learning aided uplink grant-free noma for mas-
sive machine-type communications,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 7,
pp. 2029–2041, 2021.

[10] H. Jiang, Q. Cui, Y. Gu, X. Qin, X. Zhang, and
X. Tao, “Distributed layered grant-free non-orthogonal
multiple access for massive mtc,” in 2018 IEEE 29th
Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), IEEE,
2018, pp. 1–7.

[11] F. A. Oliehoek and C. Amato, A concise introduction
to decentralized POMDPs. Springer, 2016.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[13] D. E. Knuth, Art of computer programming, volume
2: Seminumerical algorithms (3rd Edition). Addison-
Wesley Professional, 1997.

Authorized licensed use limited to: Natl Inst Of Info & Communications Tech (Nict). Downloaded on July 13,2025 at 03:13:57 UTC from IEEE Xplore. Restrictions apply.

